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A New Class of Long-Tailed Pausing Time Densities 
for the CTRW 
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We present some asymptotic results for the family of pausing time densities 
having the asymptotic (t ~ ~ )  property O(t)~ It  lnt+~(t/T)] t. In particular, 
we show that for this class of pausing time densities the mean-squared 
displacement {r2(/)) is asymptotically proportional to ln~(t/T), and the 
asymptotic distribution of the displacement has a negative exponential form. 
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A technique sometimes used to derive approximate results to describe 
transport in a disordered medium is that of the continuous-time random 
walk tl) (CTRW). The original idea of applying this methodology to such 
problems, first suggested by Scher and Lax, (2) was thereafter expanded in 
a number of further investigations, many of which are cited in ref. 3. 
Analyses of transport in a disordered or amorphous medium based on the 
CTRW can be regarded as a mean field theory since the pausing time 
density O(t) is independent of the site. Thus, the question of whether it can 
deal with quenched disorder for any particular physical problem can only 
be settled by simulation studies. A common strategy used in CTRW studies 
of anomalous diffusion is to assume that the probability density for the 
pausing time O(t) is such that the mean time between successive steps of 
the random walk is infinite. The most frequently used type of pausing time 
density is one having a stable law form, i.e., one which has the long-time 
behavior 

~(t)~T~/t ~+1, 0 < ~ < 1  (1) 
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where T is a constant with the dimensions of time. The asymptotic form in 
this last equation suffices to produce anomalous diffusion in the sense that 
for a symmetric random walk the asymptotic form of the mean squared 
displacement goes like ( r 2 ( t ) ) ~ ( t / T )  ~, where we have omitted an un- 
important constant. 

In this note we derive the analogous result for another class of long- 
tailed pausing time densities, whose behavior at long times is 

A 
~(t) tr-,nQ,~,,7~+,, Lt [ /IJJ 72>0 (2) 

where again T is a constant with the dimensions of time and A is a 
dimensionless constant. One immediately evident distinction between the 
densities in Eqs. (1) and (2) is that in the first case moments of the waiting 
time of order less than c~ will be finite, while in the second there are no 
finite positive moments. Logarithmic moments of order less than 7 will be 
finite for Eq. (2). 

The Laplace transform of moments of the displacement of a random 
walker can be expressed in terms of the Laplace transform of O(t), which 
we denote by ~(s), and the asymptotic behavior of these moments can be 
expressed in terms of the behavior of this function for s ~ 0. We therefore 
derive the small-s behavior of ~(s) in order to calculate the asymptotic 
behavior of the mean-squared displacement for such CTRWs, finally com- 
paring the results to those obtained by means of scaling arguments from an 
analysis of transport in a medium with quenched disorder. 

Our analysis starts from the trivial identity ~ ( s ) = l - [ 1 - ~ ( s ) ] ,  
which allows us to focus on the s dependence of the term in brackets: 

1-~( s )= f ;  [1-e  "']~(t) dt (3) 

A simple argument shows that the behavior of this function for s --* 0 can 
be found by substituting for ~(t) its asymptotic form [Eq. (2)], at the same 
time changing the lower limit of the integral to a nonzero value to avoid 
the apparent but not actual singularity at t = 0. This requires us to analyze 
the behavior of the integral 

f 
oo  1 - -  C s t  

I(s) = A r0 t [ l n ( - ~ j - ~  +1 dt (4) 

as s-* 0. To do so, we differentiate the integral with respect to s, finding 
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~oo 
I ' ( s ) =  A j e " 

To [ ln ( t /T ) ]  ;+ ~ dt (5) 

At this point we can invoke an Abelian theorem for Laplace transforms (4) 
to infer that 

A 

F(s )  ~ s[ ln(1/sT)]  "~ + 1 (6) 

a s  s ~ 0 ,  o r  

l ( s ) ~ A  a [ l n ( 1 / a T ) ] 7 + , -  T~/[ln(1/sT)]~ (7) 

Hence, we conclude that, as s - ,  0, 

At 
~(s) ~ 1 (8) 

[ ln (1 / ( sT) ) ]  ~ 

where all of the constants have been lumped into the single A'. 
We next examine the behavior of the mean-squared displacement of a 

symmetric CTRW when one assumes that the mean-square displacement of 
a single step of the underlying random walk is finite. If #2 is this moment, 
the Laplace transform of the variance (p2(s)) is given by 

<p2(s)) _ #2~(s) l~2[ln(1/sT)] r (9) 

s[1 - ~(s)]  A's  

which, by a Tauberian theorem, implies that, aside from a multiplicative 
constant, 

( r2 ( t ) )  ~ l n / ( t /T )  (10) 

when O(t) has the asymptotic behavior in Eq. (2). 
In a recent paper scaling arguments have been used to analyze trans- 

port in a one-dimensional medium characterized by random transition 
rates and quenched disorder. (s'6) The probability density for any single 
transition rate was assumed to have the form 

1 
p ( W )  W [ l n ( 1 / W T ) ] ~ + I  (11) 

822/'58/'5-6-31 
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Since the mean waiting time at any site is inversely proportional to the 
transition rate, the appropriate CTRW model is one in which ~s(t) is that 
shown in Eq. (2). The results obtained in ref. 5 suggest that in one dimen- 
sion 

< x 2 ( t ) > ~ [ l n { t ' ~ ]  2~ 
\r)_l ' 

t>> T (12) 

while in two or more dimensions the relation (10) is valid. When i/s(t) has 
an asymptotic stable law form, as in Eq. (1), one finds a similar dis- 
crepancy between results for a model with quenched disorder and the 
CTRW model as a function of the number of dimensions/7/ Results 
obtained for ip(t) with an asymptotic logarithmic tail [Eq. (2)] and those 
with the asymptotic stable law behavior of Eq. (1) are compared in Table I. 

Table I. A Comparison of the Asymptotic Forms for the Mean Squared 
Displacements for CTRWs Having Pausing Time Densities in 

Eqs. (1) and (2), Respectively 

Quenched  d isorder  C T R W  

~( t )  ~ T~/t ~ + 1 

~ ( t ) ~  1/ { t[ln( t /T )  ] y+ t } 

D =  1: <x2> ~ ( t /T )  m-~)/(2 ~) 

D > 1: < r2 )  ~ ( t /T )  1 ~ 

D = 1: ( x  2 > ~ ln2e(t/T) 
D >  1: ( r2>  ~ln'~( t /T)  

< r 2 > ~ ( t / T )  1-~ 

<r2> ~ ln~( t /T )  

It is also possible to find the asymptotic form for the probability 
density for the position of the random walker in one dimension p(x, t), by 
starting from an integral representation of/~(x, s): 

1 - ~(s) f~ cos(x0) dO (13) 
s (x, s)  ? U s  . 1  - 

where 2(0) is the structure function for the random walk. For  simplicity of 
notation, let us write ~(s) = 1 - e ( s ) ,  where e(s) = - A '  in 7(sT) in the limit 
sT--+ O. Let us further assume that the random walk is such that the mean 
squared displacement in a single step is finite, i.e., f~oo x Z P ( x )  d x  = 172 < o0. 
When this is the case we can find the large-[xl limit of p(x, t) by expanding 
2(0) around 0 = 0 as 2(0) ~ 1 - cr202/2 and taking the limits of integration 
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to _+ oe because of the singularity at 0 = 0 when s is set equal to 0. Thus, 
when the limit sT--* 0 is taken, /~(x, s) can be approximated (8) by 

e(s) f~ cos(x0) 
fi(x, s )=  2~-~s _~ 1 - [1 - e ( s ) ]  s dO 

~(s) f~ cos(x0) 
2~zs _~  1 - [1 - a(s)](1 - 0-202/2) dO 

e(s) f~ cos(x0) 
27zs _ oo e(s) + 0-202/2 dO 

1 exp( ]xl[2-  s)]'/2) (14) 
Since e(s) in the present case is a slowly varying function, (41 we can invoke 
a Tauberian theorem for Laplace transforms (4) to infer that when t >> T 

1 F A' ]i/2 [ (2A,)1/2 Ixj ] (15) 
p(x, t ) ~  Lln,;~T) j exp a ln~/2(t/T)J 

which is similar to the form found by Kesten (9~ for p(x, t) in the Sinai 
model for diffusion in the presence of a particular form of random field. (1~ 
Equation (15) is valid only in the tails of p(x, t). In the neighborhood of 
x = O one can follow the analysis of Weissman et al. t11) to show that p(x, t) 
can be expanded as 

p(x, t) ~ p(O, t) -- x2I(t) + O(x 4) (16) 

where 

1[ A' ];j2 
~ ~ Lln~(t-~)_l 

(17) 

and 

I(0 A' i~ 0 2 
4~ ln'(t/T) :_~ 1 -2~(0 i dO (18) 

where the integral is a convergent one. A further result derivable in one 
dimension is that for the asymptotic survival probability for a random 
walker on a line of length L with traps located at x = 0  and x = L .  A 
formula for the Laplace transform can be found from a result for the 
survival probabili ty in discrete time on a line given by Weiss and 
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Havlin. ~ When translated into continuous time, the formula for S(s) 
reads 

S(s) 411=_~(s)] ~, I 
- ~2 s J = o ( 2 j + l ) Z [ 1 - ( k ( s ) + ~ 2 ( k ( s ) ( 2 j + l ) 2 / L 2 ]  (19) 

On substituting the small-s form for ~(s), we infer that the asymptotic 
survival probability goes like 

A'L 2 
S( t )  (20) 

24 l n~( t /T )  

In three or more dimensions the general form for p(r, t) at large r will 
also have a scaling form similar to Eq. (15). For example, consider the case 
of a spherically symmetric random walk in three dimensions in the spatial 
regime in which x 2, y2 and z 2 ~  oo. The asymptotic form of the 
propagator in this regime can be found by considering the properties of the 
integral representation of the Laplace transform of the propagator/~(r, s), 

1-~(s )  ~ ~ ~ exp(ir.0) 
. . . .  f (21) 

in the neighborhood of 0 = 0. If we assume that 2(0) can be expanded near 
the origin as 2(0) ~ 3 - a202/2 + .--, then Eq. (21) can be approximated by 

1 - r  ~ ~ ~ c o s ( x O l ) c o s ( y O 2 ) c o s ( z 0 3 )  

1 - r  1 
(22, 

On making the expansion in Eq. (8), one finds that for small s 

/~(r, s) ~ 2zc~Zr s ln~(1/sT ) exp - ~ \ l n ' ( 1 / s r ) ]  (23) 

which, following our earlier analysis, implies that 

A' ~ _  r ( 6A' .~1/2] 
p(r,  t) 

2~a2 r l n~( t /T )  exp L o \ l n ~ ( t / T ) }  
(24) 

for t ~ oo. To find the asymptotic time dependence of p(0, t), we can use 
a similar argument to show that this function is inversely proportional to 
l n~( t /T )  in the long-time limit in three dimensions. 
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